Материалы / 28.03.2013 / Газовые гидраты: Япония сделала первый шаг

Газовые гидраты: Япония сделала первый шаг Газовые гидраты: Япония сделала первый шаг

Мировые запасы сланцевого газа оцениваются приблизительно в 200 трлн куб м, традиционного газа (в том числе и нефтяного попутного) – в 300 трлн куб м... Но это лишь ничтожно малая часть от общего количества природного газа на Земле: его основная часть находится в виде газовых гидратов на дне океанов . Такие гидраты представляют собой клатраты молекул природного газа (прежде всего гидрат метана). Кроме дна океанов, газовые гидраты существуют во многолетнемерзлых породах.

Запасы газовых гидратов на дне океанов определить точно пока сложно, однако, по средней оценке, там находится порядка 100 квадриллионов куб м метана (при приведении его к атмосферному давлению). Таким образом, запасы газа в виде гидратов на дне мирового океана в сто раз больше, чем сланцевого и традиционного газа вместе взятого.

Газовые гидраты имеют различный состав, это химические соединения клатратного типа (так называемый решетчатый клатрат), когда в полость кристаллической решетки «хозяина» (воды) могут внедриться посторонние атомы или молекулы («гости»). В быту самым известным клатратом является медный купорос (сульфат меди), который имеет ярко-синий цвет (такой цвет – только у кристаллогидрата, безводный сульфат меди имеет белый цвет).

Кристаллогидратами являются и газовые гидраты. На дне океанов, где по каким-то причинам осуществлялся выход природного газа, природный газ не поднимается на поверхность, а химически связывается с водой, образуя кристаллогидраты. Этот процесс возможен на большой глубине, где высокое давление , или в условиях вечной мерзлоты, где всегда отрицательная температура .

Газовые гидраты (в частности, гидрат метана) – это твердое, кристаллическое вещество. В 1 объеме газового гидрата содержится 160-180 объемов чистого природного газа. Плотность газового гидрата составляет примерно 0,9 г/кубический сантиметр, что меньше плотности воды и льда. Они легче воды и должны были бы всплыть, а затем газовый гидрат при снижении давления бы распался на метан и воду, и весь бы улетучился. Однако этого не происходит.

Этому препятствуют осадочные породы дна океана – именно на них и происходит гидратообразование. Взаимодействуя с осадочными породами дна, гидрат не может всплыть. Так как дно не пологое, а изрезанное, то постепенно образцы газовых гидратов совместно с осадочными породами опускаются вниз, и образуют совместные залежи. Зона гидратообразования идет на дне, где природный газ поступает из источника. Процесс образования залежи такого типа длится длительное время, и газовые гидраты в «чистом» виде не существуют, им обязательно сопутствуют горные породы. В итоге получается газогидратное месторождение - скопление газогидратных пород на дне океана.

Для образования газовых гидратов необходимы либо низкие температуры, либо высокие давления. Образование гидрата метана при атмосферном давлении становится возможным только при температуре -80 °C. Такие морозы возможны (и то весьма редко) только в Антарктиде, но в метастабильном состоянии газовые гидраты могут существовать при атмосферном давлении и при более высоких температурах. Но эти температуры все равно должны быть отрицательными – ледяная корка, образующаяся при распаде верхнего слоя , защищает в дальнейшем гидраты от распада, что и имеет место в районах вечной мерзлоты.

Впервые с газовыми гидратами столкнулись при разработке обычного, на первый взгляд, Мессояхского месторождения (Ямало-Ненецкий автономный округ) в 1969 году, из которого по стечению ряда факторов удалось извлечь природный газ непосредственно из газовых гидратов – порядка 36% объема добытого из него газа имело гидратное происхождение.

Кроме этого, реакция разложения газового гидрата является эндотермической , то есть энергия при разложении поглощается из внешней среды. Причем энергии необходимо затратить много: гидрат, если он начинает разлагаться, самостоятельно охлаждается и его разложение прекращается.

При температуре в 0 °C гидрат метана будет стабильным при давлении в 2,5 МПа. Температура воды вблизи дна морей и океанов составляет строго +4 °C – при таких условиях вода имеет наибольшую плотность. При этой температуре необходимое для стабильного существования гидрата метана давление будет уже вдвое выше, чем при 0 °C и составит 5 МПа. Соответственно, гидрат метана может залегать только при глубине водоема более 500 метров , так как приблизительно 100 метров воды соответствуют давлению в 1 МПа.

Кроме «природных» газовых гидратов, образование газовых гидратов является большой проблемой в магистральных газопроводах , расположенных в условиях умеренного и холодного климата, поскольку газовые гидраты способны забить газопровод и снизить его пропускную способность. Для того, чтобы этого не происходило, в природный газ добавляют небольшое количество ингибитора гидратообразования, в основном применяют метиловый спирт, диэтиленгликоль, триэтиленгликоль, иногда – растворы хлоридов (в основном поваренную соль или дешевый хлорид кальция). Или же просто используют подогрев, не допуская охлаждения газа до температуры начала гидратообразования.

С учетом огромных запасов газовых гидратов, интерес к ним в настоящее время весьма велик – ведь если не считать 200-мильной экономической зоны, океан является нейтральной территорией и любая страна может начать добычу природного газа из природных ископаемых такого типа . Поэтому вполне вероятно, что природный газ из газовых гидратов – топливо недалекого будущего, если удастся разработать рентабельный способ его добычи.

Однако добыча природного газа из гидратов – задача еще более сложная, чем добыча сланцевого газа, которая основывается на гидроразрыве пласта горючего сланца. Добывать газовые гидраты его в традиционном смысле нельзя: слой гидратов расположен на океанском дне, и просто пробурить скважину - недостаточно. Необходимо разрушить гидраты .

Это можно сделать либо понизив каким-то способом давление (первый способ), либо нагреть чем-то породу (второй способ). Третий способ предполагает сочетание обоих действий. После этого необходимо собрать выделившийся газ. Также недопустимо попадание метана в атмосферу, ибо метан – сильный парниковый газ, действующий примерно в 20 сильнее, чем газ углекислый. Теоретически возможно применение ингибиторов (тех же, что используются в газопроводах), однако реально стоимость ингибиторов оказывается слишком высокой для их практического применения.

Привлекательность добычи гидратного газа для Японии состоит в том, что согласно ультразвуковым исследованиям, запасы газовых гидратов в океане рядом с Японией оцениваются в диапазоне от 4 до 20 трлн куб м. Немало месторождений гидратов и в других областях океана. В частности, огромные запасы гидратов имеются на дне Черного моря (по примерным подсчетам, 30 трлн куб м) и даже на дне озера Байкал.

Первопроходцем в добыче природного газа из гидратов выступила японская компания Japan Oil, Gas and Metal National Corporarion. Япония – высокоразвитая страна, но чрезвычайно бедна природными ресурсами, и является крупнейшим импортером природного газа в мире, потребности в котором после аварии на АЭС «Фукусима» только возросли.

Для экспериментальной добычи метангидратов с помощью бурового судна японские специалисты выбрали вариант снижения давления (декомпрессию) . Пробная добыча природного газа из гидратов была успешно осуществлена примерно в 80 км к югу от полуострова Ацуми, где глубина моря составляет порядка километра. Японское исследовательское судно «Тикю» приблизительно год (с февраля 2012 года) осуществляла бурение трех пробных скважин глубиной 260 метров (не считая глубины океана). С помощью специальной технологии разгерметизации газовые гидраты разлагались.

Хотя пробная добыча длилась всего 6 дней (с 12 до 18 марта 2013 года), при том, что планировалась двухнедельная добыча (помешала плохая погода), было добыто 120 тыс куб м природного газа (в среднем 20 тыс куб м в сутки). Министерство экономики, торговли и промышленности Японии охарактеризовало результаты добычи как «впечатляющие», выход намного превысил ожидания японских специалистов.

Полномасштабное промышленное освоение месторождения планируется начать в 2018-2019 году после «разработки соответствующих технологий». Будут ли рентабельны эти технологии и появятся ли они – покажет время. Слишком уж много технологических проблем будет необходимо решить. Кроме добычи газа, также н еобходимо будет его сжимать либо сжижать , что потребует мощного компрессора на судне или криогенной установки. Поэтому добыча газовых гидратов, вероятно, будет стоить дороже, чем сланцевого газа, себестоимость добычи которого составляет 120-150 долл за тыс куб м. Для сравнения: себестоимость традиционного газа с традиционных месторождений не превышает 50 долл за тыс куб м.

Николай Блинков

Материалы по теме:

Япония будет добывать газ из гидратов


Тэги: Япония

Рейтинги

Первая десятка: США, Россия, Иран, Катар, Канада, Китай, Норвегия, Саудовская Аравия, Алжир, а также Индонезия.
Читать дальше




Календарь

27-27 мая 2016 года
Российский рынок газа. Биржевая торговля
Санкт-Петербург, "Кемпински Мойка 22"

Биржевая торговля газом способна стать эффективным инструментом совершенствования системы газоснабжения в России.
Подробности

Блоги

Интересные ответы на газовую шутку кормчего

ЖЖ Konfuzij
Интересные ответы на газовую шутку кормчего

Наш премьер сделал вид, что запалился и чуть не купил "Нафтогаз Украины". Потом он стал получать ответы: от Януковича, Росукрэнерго и от напарника. Полосатый рейс какой-то: полный вперед, полный назад.
Читать полностью

ГКМ

Русановское газоконденсатное месторождение

Русановское ГКМ расположено в северной части Западно-Сибирской нефтегазоносной провинции, в пределах Южно-Карской нефтегазоносной области на шельфе Карского моря.
Читать дальше

Авторский блок

Диагностика газоперекачивающего оборудования на основании упрощенного дерева событий

А.А. Паранук
Диагностика газоперекачивающего оборудования на основании упрощенного дерева событий

В статье приводиться описание упрощенного дерево события для отдельного элемента сложно технической системы действующее системы. Отражены основные аспекты, которые требуют детального анализа при составлении подобных систем. Изложена методика составления, основанная на линейной логике.
Читать дальше

Пресс-релизы

«ЛУКОЙЛ» и «КазМунайГаз» совместно разведают недра Казахстана
Компании «ЛУКОЙЛ» и «КазМунайГаз» совместно оценят углеводородный потенциал некоторых участков на территории Республики Казахстан.
Читать дальше

начало | телетайп | материалы | рейтинги | контакты

©  « Компания ИНТАРИ - сбор, анализ и хранение данных о трубопроводах », 2009 - 2017

"));